
MODBUS CLIENT
Version 1.0.0

December 2, 2021

MODBUS CLIENT

allows Q-SYS to interface with external Modbus Server devices over standard TCP/IP

communication. This allows Q-SYS to receive inputs and control outputs of automation

equipment that supports the Modbus over TCP protocol. This can greatly expand the IO

capabilities of a Q-SYS system by allowing both digital and analog signals to be easily

integrated into a design.

The plugin offers up to 999 each of Input Bits, Input Registers, Output Bits, and Output

Registers offering a staggering number of control IO points – hundreds more than a

typical control system. Inputs are polled from the Modbus Server Device up to 20 times

per second, configurable in 50ms increments. Outputs are updated up to 30 times per

second. All inputs and outputs have control pins that can be connected to other

components in the design allowing for complex control capabilities.

Both Input and Output Bits are represented as toggle buttons for easy control pin wiring.

Registers are represented as integer fields with possible values from 0 to 65,535, and as

hexadecimal string fields with values from 0x0000 to 0xFFFF.

Each Input and Output in the plugin may be configured for any IO address and do not

have to be sequential. Unused IO can be disabled to reduce clutter and confusion. IO

may also be temporarily disabled while testing or commissioning is ongoing. This

provides maximum flexibility for working with larger, more complex systems.

Outputs offer a “Force” feature which allows manual override of Server Device’s outputs

and ignores data from the control pin. When a Force is active, the provided value will be

applied to the output allowing for easier system testing, commissioning, and temporary

bypass.

Refer to the Plugin Guide Notes for information regarding protocol compatibility.

Warning

The Modbus Client plugin is not intended to be used in manufacturing, motion, or safety applications, or any other
applications where a software failure could result in damage to equipment or property, injury to persons or animals, or loss
of life. The plugin is only intended to expand the IO capabilities of a Q-SYS system for control usage within an entertainment-
related permanent installation in which General Purpose IO is not sufficient.

While Programation LLC attempts to mitigate software errors, we do not guarantee that our software is free from errors as
outlined in the Software License Agreement. By using this plugin, you assume all risk associated with any consequences that
may arise if the plugin should malfunction, including but not limited to, a malfunction of the Q-SYS system, the scripting
environment, or with the intellectual property of Programation LLC.

Important Disclaimer

Due to data processing limitations within the Q-SYS control engine, information may only be processed up to 30 times per
second, or about every 33ms. Further, the Modbus Client plugin can only poll and refresh input data from a Server Device up
to 20 times per second or every 50ms. These refresh rates are far too slow for use in any motion or safety applications. These
refresh rates may also be considered too slow for certain control applications. Careful consideration should be given when
designing and implementing a system that relies on this plugin or third-party devices. These performance rates are
approximately equal to the refresh rates of native Q-SYS GPIO which does suffice for most general-purpose control
applications.

 Input Bits
an integer between 0 and 999 that defines the number of input bits available for configuration

 Input Registers
an integer between 0 and 999 that defines the number of input registers available for configuration

 Output Bits

an integer between 0 and 999 that defines the number of output bits available for configuration

 Output Registers

an integer between 0 and 999 that defines the number of output registers available for configuration

 Is Required

a boolean that sets whether the target device is required for system functionality

 Registered Owner

a string that lists the license holder name of the plugin registration for this installation

Registered Project
a string that lists the licensed project name of the plugin registration for this installation

Registered Key

a string that lists the license key code of the plugin registration for this installation

 Status
displays various status messages to aid in monitoring the connection with the Server Device.
Communication errors will show as a fault. When a force is present on an output, the status will show as
Compromised as a reminder that the system has been overridden.

 Server Port
 sets the TCP communication port number to use when connecting to the Server Device

 Server Address
 sets the IP address to use when connecting to the Server Device

 Bus Address

sets the Modbus Bus Address (or Device ID) of the Server Device. This is useful if more than one Server
exists at the same IP address. Refer to the Notes section for more details.

` Polling Steps

sets the polling frequency of inputs from the Server Device in increments, or steps, of 50 milliseconds

 Polling Interval

displays the time of each input poll

 Input Enable
 a toggle button that sets whether this Input is used and should be polled

 Input Dec Address

an integer field that ranges from 0 to 65,536 that sets the memory address of the input in decimal

 Input Hex Address

a string field that ranges from 0x0000 to 0xFFFF that sets the memory address of the input in hexadecimal

 Input Description
 a text field that provides human-readable labeling of each input

 Input Bit Value

a toggle button that represents the state of the input on the Server Device

 Input Register Dec Value

an integer field that ranges from 0 to 65,535 that represents the value of the register on the Server Device
in decimal

 Input Register Hex Value

a string field that represents the register value in hexadecimal, ranging from 0x000 to 0xFFFF

Output Enable
 a toggle button that sets whether this Output is used and should send updates to the Server Device

 Output Dec Address

an integer field that ranges from 0 to 65,536 that sets the memory address of the output of the Server
Device in decimal

 Output Hex Address
a string field that ranges from 0x0000 to 0xFFFF that sets the memory address of the output in hexadecimal

 Output Description
 a text field that provides human-readable labeling of each output

 Output Bit Value
 a toggle button that sets the desired state of the output of the Server Device

 Output Bit Force Value
 a toggle button that sets the value of the output in the forced state

 Output Bit Force Enable

a toggle button that overrides the output bit’s value with the value specified by the Bit Force Value toggle
button. When active, the output will only follow the forced value.

 Output Bit Output
 a toggle button that represents the actual output state, after considering the forced state

 Output Register Dec Value

an integer field ranging from 0 to 65,535 that sets the desired decimal value of the output of the Server
Device

 Output Register Hex Value

a string field ranging from 0x0000 to 0xFFFF that indicates the hexadecimal value of the decimal value

 Output Register Dec Force Value
 an integer field ranging from 0 to 65,535 that sets the decimal value of the output in a forced state

 Output Register Hex Force Value
 a string field ranging from 0x0000 to 0xFFFF that sets the hexadecimal value of the output in a forced state

 Output Register Force Enable

a toggle button that overrides the output register’s value with the value specified by the Register Force
Dec/Hex Value fields. When active, the output will only follow the forced values.

 Output Register Dec Output

an integer field ranging from 0 to 65,535 that represents the actual output value in decimal, after
considering the force state

 Output Register Hex Output

a string field ranging from 0x0000 to 0xFFFF that represents the actual output value in hexadecimal, after
considering the force state

 IMPLEMENTED MODBUS FUNCTIONS

The Modbus Client plugin is compliant with the official Modbus TCP protocol and uses the methods:

• 0x02 (Read Discrete Inputs)

• 0x04 (Read Input Registers)

• 0x15 (Write Multiple Coils)

• 0x16 (Write Multiple Registers)

Polling uses only methods 2 and 4 and writing only uses methods 15 and 16. If your Server Device does not

support this, please contact us for assistance.

I/O ADDRESSING – SUPPORTING BOTH MODBUS TCP AND JBUS

Modbus TCP is a somewhat modified version of the original Modbus Serial communication protocol. Modbus TCP

has certain limitations to the number of addresses available and the quantity of coils and registers that can be

communicated in a single request. This is to keep a TCP message under the default MTU size. JBus, on the other

hand, is more relaxed with these requirements. The most noticeable difference between the two protocols for

system programmers is that Modbus TCP is 0-based in its memory addressing while JBus is 1-based.

The Modbus Client plugin is designed to not be concerned with whether the requests are 0-based or 1-based. It is

up to the Q-SYS programmer to define the memory addresses for their use-case appropriately. The plugin does not

apply any offset to the address numbers listed. If no I/O are addressed as 0, and a request is issued for memory

address 0, then the request will fail.

Consequently, the plugin allows I/O to be addressed as high as 65,536 or 0x10000. This is to maintain compliancy

with JBus, however it is an illegal data address for the Modbus protocol. Since all hexadecimal values are limited to

4 digits (2 bytes), the plugin will show a decimal address of 65,536 but a hexadecimal address of 0xFFFF.

Hexadecimal readouts of address and value fields are just for the programmer’s convenience and do not have any

practical effect on the data transmission. The plugin only considers decimal values for requests and transmissions.

When a hexadecimal value is entered or is changed, however, the corresponding decimal field will also be updated

to the correct value.

While the plugin will attempt to receive either Modbus TCP or JBus style messages without additional user

configuration, it is recommended that messages stay under the default MTU size of 1500 bytes, otherwise the

message may be split into multiple packets and the request may fail to be processed correctly.

NON-SEQUENTIAL AND NON-CONTIGUOUS ADDRESSES

As the Modbus Client plugin allows any Input or Output to have any address, addressing may be non-sequential and

non-contiguous. This allows flexibility in only creating I/O that is needed at any address. Several installations

typically prefer to use logical numbering conventions for various groups of I/O which often skips over blocks of

addresses. The plugin supports this without having to have a large number of unused controls.

When a poll request is made for inputs, all inputs are arranged first by bits, then by registers, in ascending order

based on their Modbus Address, regardless of line number in the plugin. Contiguous regions of address numbers are

then requested in a single message. Each non-contiguous break will result in a separate message being transmitted.

A large number of requests may result if many non-contiguous input addresses are requested. Performance may

degrade if the requests cannot be fulfilled faster than the specified polling time. For this reason, the polling time

should be set to a slower interval when using a large number of I/O, depending on the performance of the Server

Device.

I/O PRIORITY

All enabled inputs are polled on every polling interval. Outputs are only transmitted when a control is changed or

when the plugin connects to the Server Device. As Q-SYS only updates controls at a rate of 30 hertz, this becomes

the frequency limit to updating or controlling outputs. Transmitting output write messages and input read requests

are generated asynchronously within the plugin. To prevent overwhelming the server device with requests, only one

message may be in flight at a time. Messages are queued within the plugin and are only transmitted when a response

is received. The queue honors output write requests first before sending poll requests from the queue. This allows

outputs to be more time accurate at the minor expense of delaying input triggers.

BUS ADDRESS

Traditional Modbus is a serial line protocol that supported multiple devices to be connected to the same line.

Therefore, the protocol includes a “Bus Address” field which allows requests to target a specific device on the

communication bus. Modbus TCP offers the same functionality for cases where multiple servers share the same IP

address. The default for most devices is a Bus Address of zero.

Multiple instances of the Modbus Client plugin can run in the same Q-SYS design simultaneously provided that they

are connecting to different Server Devices. It is not recommended for two Client plugins to attempt to connect to

the same Server Device.

 V1.0.0 – DECEMBER 2, 2021

 Original release

